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Optical Channel Capacity Sensitivity
J. Hamkins,1 S. Dolinar,1 and D. Divsalar1

A previous article [1] defined fundamental parameters that determine the ca-
pacity of pulse-position modulation (PPM) on a soft-decision optical channel under
various statistical models. This article describes the relationship between the four
fundamental parameters and a multitude of physical parameters that describe the
laser, channel, and detector. Using this relationship and the gradient of capacity,
the sensitivity of capacity with respect to each fundamental and physical parameter
is derived. Numerical results indicate that, over a wide range of operating points,
a single fundamental parameter dominates the capacity calculation. Capacity was
found to be more sensitive to the signal intensity than to the background intensity—
typically by a factor of approximately two—and the quantum efficiency of a detector
was found to be the single most important detector parameter. Leakage currents
have virtually no impact on the capacity.

I. Introduction

A previous article [1] defined four fundamental parameters, ρ0, ρ+, ∆, and β0, that are sufficient to
determine the capacity of M -pulse-position modulation (PPM) on a soft-decision optical channel. Loosely
speaking, these parameters describe the slot signal-to-noise ratio (SNR), the “excess” SNR arising from
different variances in signaling and nonsignaling slots, the “skewness” of the Webb distribution, and the
closeness of the signal to the Gaussian distribution.

The Free-space Optical Communication Analysis Software (FOCAS)2 used by NASA to determine
optical link budgets uses 79 physical parameters, including: laser, relay optics, telescope, and pointing
parameters of the transmitter; modulation and coding formats of the signal; noise sources and atmospheric
parameters; and telescope, relay optics, detector, and amplifier parameters of the receiver. These physical
parameters affect capacity through their effects on the four fundamental parameters. In order to evaluate

1 Communications Systems and Research Section.

2 M. Jeganathan and S. Mecherle, A Technical Manual for FOCAS 2.0—Free-Space Optical Communications Analysis
Software, JPL unpublished internal document, Jet Propulsion Laboratory, Pasadena, California, May 1998.
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the sensitivity of capacity with respect to any given physical parameters, we explore more deeply the rela-
tionship between fundamental and physical parameters. For a full description of the physical parameters,
see, e.g., [2,4].3 The physical parameters we consider in this article are

(1) Laser and Modulator Parameters. Laser and modulator parameters include the optical
frequency, ν; the width of the pulse slot, Ts; the required dead time between pulses, Td;
the modulation extinction ratio, αer; and the order M of the M -ary PPM signal.

(2) Detector Parameters. Avalanche photodiode (APD) detector parameters include the
quantum efficiency, η; excess noise factor, F ; gain, G; noise temperature, T ; load resis-
tance, RL; bulk leakage current, Ib; and surface leakage current, Is.

(3) Channel Parameters. Channel parameters include the mean number of background pho-
tons incident on the detector, n̄b, and the mean number of pulse-induced photons incident
on the detector, n̄s.

Some other parameters can be expressed in terms of those above but will not be used explicitly in this
article. For example, the ionization ratio, keff , is related to F and G by F = keffG+ (2− 1/G)(1− keff );
the noise equivalent one-sided bandwidth, B, is set equal to 1/2Ts; and the optical frequency, ν, only
matters in how it affects n̄b and n̄s. The dead time, Td, has no bearing on capacity expressed in bits per
channel use. However, Td is very relevant for the total throughput, in bits per second. (The slot width,
Ts, is relevant to the capacity expressed in bits per channel use, because the level of thermal noise per
slot depends on Ts.) And for most lasers, αer has a negligible effect, being on the order of 106. Hence, in
the remainder of the article, ν, Td, and αer will be ignored.

II. Capacity of the Webb-Plus-Gaussian Channel

In [1], the capacity of the standard additive white Gaussian noise channel (AWGN-1), a more general
AWGN channel (AWGN-2), a Webb-distributed channel (Webb-2), and a blended Webb and Gaussian
channel (Webb+Gaussian) were considered. Here, we concentrate on the Webb+Gaussian channel, which
models both the avalanche process in an APD and the thermal noise process in follow-on electronics.

A. Channel Model

Each slot statistic yi at the output of an APD is a Webb+Gaussian distributed random variable [1]:

yi ∼
{
W (m1, σ

2
1 , δ

2
1) +N(m′, σ′2) signaling slot

W (m0, σ
2
0 , δ

2
0) +N(m′, σ′2) nonsignaling slot

(1)

3 Ibid.
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where W (m,σ2, δ2) = m+ σW (0, 1, δ2) is a shifted, scaled version of the zero-mean, unit-variance Webb
random variable W (0, 1, δ2) that has probability density

φ(w; δ2) 4=
1√
2π

(
1 + w

δ

)−3/2

e−w
2/2(1+w/δ), w > −δ (2)

and where N(m,σ2) = m+σN(0, 1) is a shifted, scaled version of the zero-mean, unit-variance Gaussian
random variable N(0, 1) that has probability density

φ(x) 4=
1√
2π
e−x

2/2 (3)

The Webb+Gaussian random variable W (m,σ2, δ2) +N(m′, σ′2) can also be written as a shifted, scaled
version of a composite zero-mean, unit-variance random variable, as

W (m,σ2, δ2) +N(m′, σ′2) 4= WG(m+m′, σ2 + σ′2, δ2, β)

= m+m′ +
√
σ2 + σ′2

(√
βW (0, 1, δ2) +

√
1− βN(0, 1)

)

where β = σ2/(σ2 + σ′2). The term in parentheses is a zero-mean, unit-variance random variable,
WG(0, 1, δ2, β), with probability density

φ(x; δ2, β) =
∫ ∞
−δ

1√
β
φ

(
w√
β

; δ2

)
1√

1− β φ

(
x− w√
1− β

)
dw (4)

B. Capacity

From [1], the capacity of soft-decision M -PPM on the Webb+Gaussian channel in bits per channel
use is4

C = log2M − Ev|x1
log2

M∑
j=1

φ

(√
ρ+

ρ0 + ρ+
(vj −

√
ρ0);

ρ0 + β0ρ+

ρ0
∆,

ρ0 + β0ρ+

ρ0 + ρ+

)
φ

(
v1;

β0ρ+

ρ0
∆, β0

)
φ

(√
ρ+

ρ0 + ρ+
(v1 −

√
ρ0);

ρ0 + β0ρ+

ρ0
∆,

ρ0 + β0ρ+

ρ0 + ρ+

)
φ

(
vj ;

β0ρ+

ρ0
∆, β0

)
(5)

4 The cited article had an error in this expression. The corrected expression is given here.
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where the four fundamental parameters are

ρ0
4=

(m1 −m0)2

σ2
0 + σ′2

(6)

ρ+
4=

(m1 −m0)2

σ2
1 − σ2

0

(7)

∆ 4= δ2
1 − δ2

0 (8)

β0
4=

σ2
0

σ2
0 + σ′2

(9)

and where the components of v are distributed as

vj ∼


WG

(
√
ρ0,

ρ0 + ρ+

ρ+
,∆ +

β0ρ+∆
ρ0

,
ρ0 + β0ρ+

ρ0 + ρ+

)
j = 1

WG

(
0, 1,

β0ρ+∆
ρ0

, β0

)
j 6= 1

(10)

The capacity can be rewritten as

C = log2M − Ev|x1 log2

 M∑
j=1

L(vj)
L(v1)

 (11)

where

L(vj) =
φ

(√
ρ+

ρ0 + ρ+
(vj −

√
ρ0);

ρ0 + β0ρ+

ρ0
∆,

ρ0 + β0ρ+

ρ0 + ρ+

)
φ

(
vj ;

β0ρ+

ρ0
∆, β0

) (12)

is the likelihood ratio of vj .

C. Relationship of Fundamental and Physical Parameters

The capacity of soft-decision M -ary PPM on the Webb+Gaussian channel given by Eq. (11) is a real-
valued function C(a), where a = (ρ0, ρ+,∆, β0) is the vector of fundamental parameters. The fundamental
parameter vector a can be expressed in terms of physical parameters

P = {η, n̄s, n̄b, F, Ib, Is, Ts, T,RL, G}

by
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ρ0
4=

(m1 −m0)2

σ2
0 + σ′2

=
G2η2n̄2

s

FG2

(
ηn̄b +

IbTs
e−

)
+
IsTs
e−

+
2κTTs
RLe2

−

(13)

ρ+
4=

(m1 −m0)2

σ2
1 − σ2

0

=
ηn̄s
F

(14)

∆ 4= δ2
1 − δ2

0 =
ηn̄sF

(F − 1)2
(15)

β0
4=

σ2
0

σ2
0 + σ′2

=
1

1 +
σ′2

σ2
0

=
1

1 +

IsTs
e−

+
2κTTs
RLe2

−

FG2

(
ηn̄b +

Ib Ts
e−

)
(16)

Expressions of parameters m0, m1, σ2
0 , σ2

1 , σ′2, δ2
0 , and δ2

1 in terms of the physical parameters can be
found in, e.g., [1,2,6]. See Appendix A for a review of all the parameters used in this article.

III. Capacity Sensitivity

The sensitivity of capacity to a fundamental or physical parameter x at operating point a is defined
as the partial derivative of the logarithm of capacity with respect to the logarithm of the parameter:

capacity sensitivity with respect to x 4=
∂ logC(a)
∂ log x

The logarithm is used to emphasize the sensitivity of the parameter without regard to the units in which
the parameter is measured, and it allows us to effectively compare the relative sensitivities of various
parameters. This is in contrast to the linear partial derivative ∂C/∂x, which has one value when, for
example, x = Ts is measured in nanoseconds, and a value one billion times smaller when x = Ts is
measured in seconds. If x is a physical parameter, we may express the sensitivity with respect to x at
operating point a as

∂ logC(a)
∂ log x

=
(

1
C(a)

)
∂C(a)
∂ log x

=
(

x

C(a)

)
∂C(a)
∂x

(17)

=
(

x

C(a)

)(
∂C(a)
∂ρ0

∂ρ0

∂x
+
∂C(a)
∂ρ+

∂ρ+

∂x
+
∂C(a)
∂∆

∂∆
∂x

+
∂C(a)
∂β0

∂β0

∂x

)

=
(

x

C(a)

)
∇C(a) · ∂a

∂x
(18)

i.e., the normalized dot product of the gradient of C(a) and the vector ∂a/∂x that forms one of the
columns of the Jacobian matrix of a:
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J(a)

=



∂ρ0

∂η

∂ρ0

∂n̄s

∂ρ0

∂n̄b

∂ρ0

∂F

∂ρ0

∂Ib

∂ρ0

∂Is

∂ρ0

∂Ts

∂ρ0

∂T

∂ρ0

∂RL

∂ρ0

∂G

∂ρ+

∂η

∂ρ+

∂n̄s

∂ρ+

∂n̄b

∂ρ+

∂F

∂ρ+

∂Ib

∂ρ+

∂Is

∂ρ+

∂Ts

∂ρ+

∂T

∂ρ+

∂RL

∂ρ+

∂G

∂∆
∂η

∂∆
∂n̄s

∂∆
∂n̄b

∂∆
∂F

∂∆
∂Ib

∂∆
∂Is

∂∆
∂Ts

∂∆
∂T

∂∆
∂RL

∂∆
∂G

∂β0

∂η

∂β0

∂n̄s

∂β0

∂n̄b

∂β0

∂F

∂β0

∂Ib

∂β0

∂Is

∂β0

∂Ts

∂β0

∂T

∂β0

∂RL

∂β0

∂G


=



ηe2−G
2RLn̄

2
s(ηn̄be2−FG2RL+2(e−(Is+FG2Ib)RL+2κT)Ts)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2
n̄s
F

Fn̄s
(F−1)2

n̄be
2
−FG

2RL(e−IsRL+2κT )Ts

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

2η2e2−G
2RLn̄s

ηn̄be2−FG
2RL+(e−(Is+FG2Ib)RL+2κT )Ts

η
F

ηF
(F−1)2 0

−η3e4−FG
4R2

Ln̄
2
s

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 ηe2−FG
2RL(e−IsRL+2κT )Ts

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

−η2e3−G
4R2

Ln̄
2
s(ηn̄be−+IbTs)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2
−ηn̄s
F 2

−η(1+F )n̄s
(F−1)3

e−G
2RL(e−IsRL+2κT )Ts(ηn̄be−+IbTs)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

−η2e3−FG
4R2

Ln̄
2
sTs

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 e−FG
2RL(e−IsRL+2κT )T 2

s

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

−η2e3−G
2R2

Ln̄
2
sTs

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 −e2−FG2R2
LTs(ηn̄be−+IbTs)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

−η2e2−G
2RLn̄

2
s(e−(Is+FG2Ib)RL+2κT)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 −ηn̄be2−FG2RL(e−IsRL+2κT )

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

−2η2e2−G
2kRLn̄

2
sTs

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 −2e−FG
2κRLTs(ηn̄be−+IbTs)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

2η2e2−G
2κn̄2

sTTs

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 2e−FG
2κTTs(ηn̄be−+IbTs)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2

2η2e2−GRLn̄
2
s(e−IsRL+2κT )Ts

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2 0 0 2e−FGRL(e−IsRL+2κT )Ts(ηn̄be−+IbTs)

(ηn̄be2−FG2RL+(e−(Is+FG2Ib)RL+2κT )Ts)2



T

(Note that the expanded matrix has been written as a transpose.) To determine the sensitivity of
capacity with respect to one of the physical parameters, we need only determine the gradient of the
capacity expressed as a function of the four fundamental parameters and form the inner product with
the appropriate column of J(a).
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IV. Numerical Results

A. Approach

To evaluate the capacity for a given set of fundamental parameters, ρ0, ρ+, ∆, and β0, we generate
a random vector v = (v1, · · · , vM ) according to Eq. (10), evaluate the logarithmic function in Eq. (11),
and average the computed logarithm over several million such random vector samples. In order to avoid
performing the hundreds of millions of resulting convolution integrals, we save a look-up table for the
likelihood ratio L(v) over a wide range of v. The range needs to be chosen large enough so that millions
of random samples drawn from either probability density function (pdf) in Eq. (10) are unlikely to take
on values outside of this range. This is accomplished with a range from eight standard deviations below
the mean of vj , j ≥ 2 to eight standard deviations above the mean of v1. To obtain sufficient resolution,
a uniformly quantized table of size 10,000 is used within this range, which requires computation of
20,000 convolution integrals. The table requires approximately 15 seconds of computation time on a
Pentium-II 333 and saves over 1,000 hours of computation time if the overall simulation uses 10 million
sample vectors. A typical likelihood ratio L(v) over the range stored in the look-up table is shown in
Fig. 1.

The gradient of the capacity is computed by finite differences: the capacity is determined at a nominal
operating point, a0 = (ρ0, ρ+,∆, β0), and then at the operating points

a1 = (ρ0 − ε, ρ+,∆, β0)

a2 = (ρ0, ρ+ − ε,∆, β0)

a3 = (ρ0, ρ+,∆− ε, β0)

a4 = (ρ0, ρ+,∆, β0 − ε)

Each of the operating points requires its own look-up table for L(v). The gradient is then given by

10-10

10-8

10-6

0.0001
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1
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106
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1010
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v

L 
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 )

Fig. 1.  Likelihood ratio L (v ) over the range stored in
the look-up table, Case 1.
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∇C(a0) ≈
(
C(a0)− C(a1)

ε
,
C(a0)− C(a2)

ε
,
C(a0)− C(a3)

ε
,
C(a0)− C(a4)

ε

)

Following the calculation of the gradient, the inner product is formed with the appropriate column of
J(a).

B. Results at Specific Operating Points

1. Case 1: Strong Signal, Strong Background, Optimized Gain. Here we consider a
PerkinElmer SliK APD detector with physical parameters η = 0.38, F = 2.42572, Ib = 40 fA,
Is = 2.00 nA, T = 300 K, and RL = 179.7 kΩ. It has been shown [3,5] that, for this set of param-
eters, G = 65 is the optimum gain for hard-decision detection of 256-PPM. This is also a good estimate
of the gain that maximizes capacity on the soft-decision channel, which turned out to be G = 59. We
use a Q-switched Nd:YAG laser modulated with a slot width of Ts = 31.25 ns. A high signal strength,
n̄s = 100, is incident on the detector, and a high background level, n̄b = 100, is also present, which
corresponds to reception on a clear, sunny day.

Plugging these parameters into Eqs. (13) through (16), it follows that ρ0 = 13.7, ρ+ = 15.7, ∆ = 45.3,
and β0 = 0.873. The likelihood ratio L(v) computed for these parameters is shown in Fig. 1. Using
the finite differences method described above, the partial derivative of capacity with respect to each
fundamental parameter, i.e., the components of the gradient, was computed. These components, when
normalized as in Eq. (17), give the capacity sensitivity with respect to each of the fundamental parameters,
which is shown in Fig. 2. Note that by far the SNR parameter, ρ0, has the greatest effect on capacity,
followed by the excess SNR parameter, ρ+. The blending fraction, β0, and skewness difference, ∆, play
lesser roles.

The Jacobian matrix was evaluated (see numerical value in Appendix B) and used to determine the
∂C/∂x for each physical parameter x. The capacity sensitivity with respect to the physical parameters
is shown in Fig. 3.

0.00
1 2 3 4 5 8

k

Fig. 2.  Capacity sensitivity of 2k-PPM, with respect
to fundamental parameters, Case 1.
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Fig. 3.  Capacity sensitivity of 2k-PPM, with respect
to physical parameters, Case 1.
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As is no surprise, the signal intensity, n̄s, and background intensity, n̄b, are two of the most important
physical parameters. Curiously, capacity sensitivity with respect to n̄s is approximately twice the sen-
sitivity with respect to n̄b. This contrasts with the usual AWGN channel, where signal and noise affect
capacity in precisely equal amounts, i.e., only through their ratio. Also, note that sensitivity of n̄s is
the sum of the sensitivities of n̄b and η. This is a consequence of the fact that the number of absorbed
photons is proportional to η.

The most capacity-sensitive detector parameter is the quantum efficiency, η, which at the operating
point shown is even more influential than the background intensity. Capacity is also sensitive to the
excess noise ratio, F . The slot width, Ts; noise temperature, T ; and load resistance, RL, play lesser roles,
and are nearly equal because of their occurrence together in Eqs. (13) and (16). Capacity sensitivity with
respect to both Ib and Is is more than two orders of magnitude lower than the other parameters. This
is because Is and Ib contribute only negligibly to ρ0 and β0 at this operating point as compared with
the other physical parameters in Eqs. (13) and (16). Since the gain has been optimized, capacity is not
sensitive to the gain.

2. Case 2: Strong Signal, Strong Background, Nonoptimized Gain. If we now let G = 30
instead of the optimized G = 59 used above, we obtain ρ0 = 9.95, ρ+ = 17.6, ∆ = 60.8, and β0 = 0.566.
A full simulation was run to determine C(a) and ∇C(a) at this operating point. The capacity sensitivities
with respect to the fundamental parameters are shown in Fig. 4. Again, the SNR parameter, ρ0, has by
far the greatest effect on capacity, followed by the excess SNR parameter, ρ+. And again, the blending
fraction, β0, and skewness difference, ∆, play lesser roles.

The Jacobian matrix for Case 2 is given in Appendix B, from which we obtain the capacity with
respect to the physical parameters. The capacity sensitivity with respect to the physical parameters is
shown in Fig. 5. As can be seen, capacity is sensitive in a very similar way to that in Case 1, except
that the non-optimized gain, G, is easily identified by its much larger value. In this case, the capacity
sensitivity with respect to G is about ten times that in Case 1, which is an indication that capacity may
be increased by properly increasing the gain.

3. Case 3: Weak Signal, Strong Background. In this weak signal, strong background case, we
let n̄s = 10, n̄b = 100, and G = 30. Here, ρ0 = 0.0995, ρ+ = 1.76, ∆ = 6.08, and β0 = 0.566, and the
Jacobian matrix is given in Appendix B. A full simulation was run at this operating point. The capacity
sensitivities with respect to the fundamental parameters are shown in Fig. 6. Here, the SNR, ρ0, plays
the only non-negligible role, with ρ+, ∆, and β0 more than two orders of magnitude behind. This implies
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Fig. 4.  Capacity sensitivity of 2k-PPM, with respect
to fundamental parameters, Case 2.
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Fig. 5.  Capacity sensitivity of 2k-PPM, with respect
to physical parameters, Case 2.
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Fig. 6.  Capacity sensitivity of 2k-PPM, with respect
to fundamental parameters, Case 3.
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that, when the signal strength is low, capacity is almost completely a function of one SNR parameter and
is very sensitive to the precise signal level.

Indeed, we see in Fig. 7 that (n̄s/C)|∂C/∂n̄s| and (η/C)|∂C/∂η| are much higher than in Cases 1
and 2. In fact, they are greater than one, meaning a more than one-for-one return on investment is
possible. Capacity sensitivities with respect to other physical parameters are similar to Cases 1 and 2.

4. Case 4: Weak Signal, Weak Background. In Case 4, we let n̄s = 10, n̄b = 1, and G = 140. It
follows that ρ0 = 3.58, ρ+ = 1.28, ∆ = 2.93, β0 = 0.284, and the Jacobian matrix is given in Appendix B.

A full simulation was run at this operating point. The capacity sensitivities with respect to the
fundamental parameters are shown in Fig. 8. As in all previous cases, the SNR parameter, ρ0, has the
greatest effect on capacity. In this case, however, the skewness difference, ∆, has a greater effect at higher
PPM orders than the excess SNR, ρ+. The sensitivities with respect to both ∆ and ρ+ are significantly
higher than in the previous cases, because when both signal and background are weak, the difference
of the variances or skewnesses in the signal and nonsignal slots becomes relatively more important in
distinguishing signals. As in all previous cases, the fraction of the signal that is Webb distributed, β0,
plays a minor role at this operating point.

The capacity sensitivities with respect to the physical parameters are shown in Fig. 9. As in Case 3,
n̄s and η are the critical physical parameters. The background intensity, n̄b, is even less influential than
in Cases 1 through 3. Reducing the background intensity incident on the detector would not be even as
effective as, e.g., reducing the effective noise temperature of the detector.

V. Conclusions

The capacity of the Webb+Gaussian channel was derived analytically and evaluated numerically in four
cases. In conjunction with a Jacobian matrix that describes the relationship between four fundamental
parameters and ten physical parameters, this allowed us to determine the sensitivity of the capacity with
respect to any of the four fundamental parameters and any single physical parameter.

In all cases considered, the capacity was found to be most sensitive to the primary SNR parameter,
ρ0, with the other three fundamental parameters playing lesser roles.
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Fig. 7.  Capacity sensitivity of 2k-PPM, with respect
to physical parameters, Case 3.
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Fig. 8.  Capacity sensitivity of 2k-PPM, with respect
to fundamental parameters, Case 4.
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Fig. 9.  Capacity sensitivity of 2k-PPM, with respect
to physical parameters, Case 4.
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Perhaps the most surprising result is that, in all cases evaluated, the signal intensity has a substantially
larger influence on capacity than the background intensity, usually by a factor of two or more. This is
particularly true during night reception, in which a 1 percent reduction in background intensity would not
increase the capacity as much as, for example, a 1 percent reduction in the equivalent noise temperature
or a 1 percent reduction in the excess noise factor of the detector.

There are a number of expected results, as well. The quantum efficiency was shown to be the critical
detector parameter and was found to be more influential than any other physical parameter except the
signal intensity. When the gain was not optimized, the capacity was sensitive to small gain fluctuations;
when the gain was optimized, the capacity was not sensitive to small gain fluctuations. The leakage
currents affected capacity much less than the other parameters, by multiple orders of magnitude.

The overall relative importance of the physical parameters, with respect to capacity sensitivity, was
found to be fairly consistent. The physical parameters, in order of influence, are the signal intensity,
the quantum efficiency, the excess noise factor, the background intensity, the gain, the slot width, the
equivalent noise temperature, the load resistance, the surface leakage current, and the bulk leakage
current.
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Appendix A

Parameters

Fundamental parameters

ρ0
4
=

(m1 −m0)2

σ2
0 + σ′2

Slot SNR

ρ+
4
=

(m1 −m0)2

σ2
1 − σ2

0

Excess slot SNR

∆
4
= δ2

1 − δ2
0 Difference of Webb skewness in signaling and nonsignaling slots

β0
4
=

σ2
0

σ2
0 + σ′2

Fraction of APD output having Webb distribution

Channel description parameters

m0,m1 Mean of Webb component of nonsignaling, signaling slot statistic

σ2
0 , σ

2
1 Variance of Webb component of nonsignaling, signaling slot statistic

m′ Mean of AWGN component of slot statistic

σ′2 Variance of AWGN component of slot statistic

δ2
0 , δ

2
1 Skewness of Webb component of nonsignaling, signaling slot statistic

Laser and modulator parameters

M 2–256 PPM order

Ts 3.125× 10−8 Width of the PPM slot required by laser, s

APD detector parameters

η 38% Quantum efficiency

F 2.2–3.4 Excess noise factor, F = keffG+
(

2−1
G

)
(1− keff )

Ib 4× 10−14 Bulk leakage current, A

Is 2× 10−9 Surface leakage current, A

T 300 Noise temperature, K

RL 179,700 Load resistance (transimpedance model), 5.75× 1012 × Ts, Ω

B
1

2Ts
Noise equivalent one-sided bandwidth, Hz

G 30–200 Gain

Other parameters

n̄b 0.001–10,000 Mean background photons incident on the photodetector, per slot

n̄s 100 Mean signal photons incident on the photodetector, per pulse

Physical constants

κ 1.38× 10−23 Boltzmann’s constant, J/K

e− 1.6× 10−19 Electron charge, C
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Appendix B

Numerical Evaluation of J (a)

The numerical values of the Jacobian matrices for Cases 1 through 4 are given below.

I. Case 1

J(a) =


40.6 0.273 −0.119 −4.92 −6.13× 1010

41.2 0.157 0 −6.46 0
119 0.453 0 −44.9 0
−0.292 0 −0.00111 −0.0457 −5.7× 108

· · ·

· · ·
−5.99× 106 −5.56× 107 −0.00575 9.59× 10−6 0.0534

0 0 0 0 0
0 0 0 0 0

3.82× 105 3.55× 106 0.000367 −6.12× 10−7 −0.00341



II. Case 2

J(a) =


37.5 0.199 −0.0563 −2.61 −2.9× 1010

46.2 0.176 0 −8.12 0
160 0.608 0 −76.4 0
−0.646 0 −0.00246 −0.114 −1.26× 109

· · ·

· · ·
−1.49× 107 −1.38× 108 −0.0143 2.38× 10−5 0.288

0 0 0 0 0
0 0 0 0 0

8.47× 105 7.86× 106 0.000813 −1.36× 10−6 −0.0164



III. Case 3

J(a) =


0.375 0.0199 −0.000563 −0.0261 −2.9× 108

4.62 0.176 0 −0.812 0
16 0.608 0 −7.64 0

−0.646 0 −0.00246 −0.114 −1.26× 109

· · ·

· · ·
−1.49× 105 −1.38× 106 −0.000143 2.38× 10−7 0.00288

0 0 0 0 0
0 0 0 0 0

8.47× 105 7.86× 106 0.000813 −1.36× 10−6 −0.0164


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IV. Case 4

J(a) =


16.2 0.715 −0.996 −0.344 −5.12× 1011

3.38 0.128 0 −0.434 0
7.71 0.293 0 −2 0
−0.525 0 −0.199 −0.0688 −1.02× 1011

· · ·

· · ·
−8.83× 106 −8.26× 107 −0.00847 1.41× 10−5 0.0366

0 0 0 0 0
0 0 0 0 0

7.02× 105 6.38× 106 0.000673 −1.12× 10−6 −0.00291


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